전통문화대전망 - 전통 명절 - 주류 견해에 도전하는 유명인의 예
주류 견해에 도전하는 유명인의 예
과학에 미친 캔터
무한대를 연구하면 종종 논리적이지만 터무니없는 결과("역설"이라고 함)로 이어지기 때문에 많은 위대한 수학자들은 함정에 빠질까 봐 후퇴하는 태도. 1874년에서 1876년 사이, 30세도 안 된 독일의 젊은 수학자 칸토어는 신비로운 무한성에 대한 전쟁을 선포했습니다. 그는 그의 노고에 힘입어 직선 위의 점이 평면 위의 점과 일치할 수 있고 공간의 점과도 일치할 수 있음을 성공적으로 증명했습니다. 1cm 길이의 선분 안에는 태평양의 점이 있고 지구 전체 내부의 점이 있는 것처럼 "같은 수"의 점이 있는 것 같습니다. 나중에 Cantor는 이러한 유형의 "무한"에 관한 일련의 논문을 출판했습니다. set" 문제. 이 기사는 엄격한 증명을 통해 놀라운 결론을 많이 이끌어냅니다. 칸토어의 창의적인 작업은 전통적인 수학적 개념과 날카로운 충돌을 일으켰고, 어떤 사람들은 반대하고, 공격하고, 심지어 학대하기까지 했습니다. 어떤 사람들은 칸토어의 집합론을 '질병'이라고 하고, 칸토어의 개념은 '안개 속의 안개'라고까지 말합니다. 그들은 심지어 칸토어를 '미치광이'라고까지 말합니다. 수학 권위자들의 엄청난 정신적 압박으로 마침내 칸토르는 무너졌고, 그는 정신적으로나 육체적으로 탈진하여 정신분열증을 앓고 정신병원으로 보내졌습니다.
진짜 금은 불을 두려워하지 않고, 칸토어의 생각은 마침내 빛을 발했다. 1897년에 열린 제1회 국제수학자회의에서 그의 업적이 인정받았는데, 위대한 철학자이자 수학자인 러셀은 칸토어의 업적을 "아마도 이 시대가 자랑할 수 있는 가장 위대한 업적"이라고 칭찬했습니다. 사람들의 존경으로부터 위로와 기쁨을 얻을 수 없었습니다. 칸토어는 1918년 1월 6일 정신병원에서 사망했습니다.
이제 그가 창시한 집합론은 수학의 중요한 기초이론으로 인정받고 있다